Mutations in a Conserved Replication Protein Suppress Transcriptional Gene Silencing in a DNA- Methylation-Independent Manner in Arabidopsis
نویسندگان
چکیده
Mutations in the DNA glycosylase/lyase ROS1 cause transcriptional silencing of the linked RD29A-LUC and 35S-NPTII transgenes in Arabidopsis. We report here that mutations in the Arabidopsis RPA2 locus release the silencing of 35S-NPTII but not RD29A-LUC in the ros1 mutant background. The rpa2 mutation also leads to enhanced expression of some transposons. Neither DNA methylation nor siRNAs at any of the reactivated loci are blocked by rpa2. Histone H3 methylation at lysine 4 was increased and histone H3 methylation at lysine 9 was decreased at the 35S promoter in the ros1rpa2 mutant compared to the ros1 background. RPA2 encodes a nuclear protein similar to the second subunit of the replication protein A conserved from yeast to mammals. Ectopic expression of the Arabidopsis RPA2 could complement the yeast rfa2 (rpa2) mutant. These results suggest an essential role of RPA2 in the maintenance of transcriptional gene silencing at specific loci in a DNA-methylation-independent manner. In addition, we found that rpa2 mutants are hypersensitive to the genotoxic agent methyl methanesulphonate, and the RPA2 protein interacts with ROS1 in vitro and in vivo, suggesting that RPA2 also functions together with ROS1 in DNA repair.
منابع مشابه
The protein kinase TOUSLED is required for maintenance of transcriptional gene silencing in Arabidopsis.
TOUSLED-like kinases (TLKs) are highly conserved in plants and animals, but direct evidence linking TLKs and transcriptional gene silencing is lacking. We isolated two new alleles of TOUSLED (TSL). Mutations of TSL in ros1 reactivate the transcriptionally silent 35S-NPTII transgene and the transcriptionally silent endogenous loci TSI (TRANSCRIPTIONAL SILENCING INFORMATION). Chromatin immunoprec...
متن کاملTranscriptional gene silencing mediated by a plastid inner envelope phosphoenolpyruvate/phosphate translocator CUE1 in Arabidopsis.
Mutations in REPRESSOR OF SILENCING1 (ROS1) lead to the transcriptional gene silencing (TGS) of Pro(RD29A):LUC (LUCIFERASE) and Pro(35S):NPTII (Neomycin Phosphotransferase II) reporter genes. We performed a genetic screen to find suppressors of ros1 that identified two mutant alleles in the Arabidopsis (Arabidopsis thaliana) CHLOROPHYLL A/B BINDING PROTEIN UNDEREXPRESSED1 (CUE1) gene, which enc...
متن کاملArabidopsis RPA2: A Genetic Link among Transcriptional Gene Silencing, DNA Repair, and DNA Replication
Transcriptional gene silencing (TGS) controls the expression of transposable elements and of endogenous genes containing promoter repeats, and it is associated with increased DNA methylation. TGS-deficient mutants impaired in siRNA accumulation and/or chromatin modification (ago4, bru1, cmt3, dcl3, ddm1, drd1, drm2, fas1, fas2, hda6, hog1, met1, mom1, nrpd1a, nrpd1b, nrpd2a, rdr2, suvh2, and su...
متن کاملArabidopsis mutants impaired in cosuppression.
Post-transcriptional gene silencing (cosuppression) results in the degradation of RNA after transcription. A transgenic Arabidopsis line showing post-transcriptional silencing of a 35S-uidA transgene and uidA-specific methylation was mutagenized using ethyl methanesulfonate. Six independent plants were isolated in which uidA mRNA accumulation and beta-glucuronidase activity were increased up to...
متن کاملARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation.
Proteins of the ARGONAUTE family are important in diverse posttranscriptional RNA-mediated gene-silencing systems as well as in transcriptional gene silencing in Drosophila and fission yeast and in programmed DNA elimination in Tetrahymena. We cloned ARGONAUTE4 (AGO4) from a screen for mutants that suppress silencing of the Arabidopsis SUPERMAN (SUP) gene. The ago4-1 mutant reactivated silent S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 15 شماره
صفحات -
تاریخ انتشار 2005